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bstract

The issue of this paper is related with the on-line state estimation of a class of sequencing batch reactors (SBR). This operating mode of SBR can
e analyzed as a repetitive process, where some operating conditions changes from one batch to other, which leads to nominal model degradation
f the plant and consequently a bad estimation performance when standard observers are employed. To avoid the problems above mentioned
t is proposed a finite time convergence observer with a fractional power of the time estimation error plus a discrete integral-type contribution

f the discrete estimation error in order to reach finite time convergence and compensate the modeling error which arises when each batch is
rocessed. The proposed observer is applied to a class of simple bioreactor model experimentally corroborated, where numerical simulations show
he satisfactory performance of the proposed methodology in comparison with standard nonlinear Luenberger observers. Mathematical proof of
he convergence of the proposed observer is addressed.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The estimators or observers for states and uncertainties can
lay a key role during the early detection of hazardous and
nsafe operating conditions and process control. Following this
pirit, several researches have been focused in the proposition of
stimation methodologies for states variables and uncertainties
resent in industrial processes.

As is well known, one of the first state observers employed in
ndustrial operation is the extended Kalman filters, because of
heir easy implementation and capabilities to deal with errors in
he modeling and the measurements in its structure. Nonetheless,
his design is based on linearized approaches of the nonlinear
ystem, where robustness and asymptotic convergence prop-
rties are difficult to prove [1]. Recently Aguilar et al. [2,3]

ropose state observers for chemical reactors with uncertain
inetics, however all these approaches provide an asymptotic
onvergence of the observers.

∗ Corresponding author.
E-mail addresses: raguilar@correo.azc.uam.mx (R. Aguilar-López),

guerra@ctrl.cinvestav.mx (R. Martı́nez-Guerra).
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However for batch processing mode the state observers needs
o converge in a finite time, because only a time period is
vailable to conduce the process to satisfactory performance,
n comparison with the continuous process mode where a time
perating restriction is not enough important. In contrast, for
bserving purposes, convergence in finite time is an attrac-
ive feature which is very important for industrial applications
hich operate under fast dynamic conditions and time process-

ng restriction. Finite time observer design has been presented
n several papers, for example, in Ref. [4] a finite time observer
esign for linear systems is developed, where the convergence
ime can be assigned independently of the observer eigenvalues.
ther approach considers a class of nonlinear systems which

an be transformed on Brunovsky form to construct finite time
bservers under the frame of sliding theory with application to
ynchronization of chaotic systems [5]. Generally finite time
ontrollers and observers have been applied to robot manipula-
ors [6,7], secure data transmission [5,8] but the process control
nd estimation applications are up-to-date very few. As far as

e know, the application of finite time observers to repeti-

ive process are not enough studied. The main problem with
he design of a state observer for repetitive process is related
ith the hybrid observer structure that must be considered in

mailto:raguilar@correo.azc.uam.mx
mailto:rguerra@ctrl.cinvestav.mx
dx.doi.org/10.1016/j.cej.2006.09.003
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he sense that the proposed observers must to converge in the
nite time when each batch is processed and besides with the
umber of batch processes, in other words, the observer must
ontain a continuous (in time) and discrete (in batches number)
ontributions.

. Mathematical assumptions

The mathematical model above presented can be represented
s nonlinear plant, with linear output which can be described by
he following lumped parameter model:

Ẋj(t) = Φj(Xj(t), U(t)) + �Φ(j)

Yj(t) = h(Xj(t)) = CXj(t)
(1)

ere, X ∈ �n is the vector of states; U ∈ �r is the vector control
nput; Y ∈ �m is the system output; Φj(◦) : �n+r → �n is a
onlinear vector field; �Φ(j) is the modeling error which arises
rom each batch to other, j = 1, 2, . . ., p is related with the batch
umber, note that the modeling error can be considered as a
onstant disturbance when the corresponding batch is performed
n time and it only changes with the batch number, moreover
Φ(j) = 0 for j = 1, i.e. the first batch processed is completely

escribed by the nominal mathematical model. Now, consider
he following assumptions:

1. The system given by Eq. (1) is locally uniformly observ-
ble, since for all x ∈ �n and u ∈ �r,

ank

{
∂

∂x
ζ

}
= n

ere ζ is the observability vector function defined as
= (dL0

f h1, . . . , dL0
f hm, . . . , dL1

f h1, . . . , dL1
f hm, . . . , dLn−1

f

1, . . . , dLn−1
f hm)

T
, being Ld

f hs (s = 1, 2, . . ., m) the d-order
ie derivatives.

The task is to design an observer to estimate the vector of
tate variables X, considering that Y is measured on-line and U
s known at each time interval.

. Estimation methodology

roposition 1. The following dynamic system is a finite time
bserver for system (1):

˙̂
j(t) = Φj(X̂j(t), U(t)) − Kct(|Yj(t) − CX̂j(t)|1/q)

+ Kd

p∑
j=1

(Yj(t = T ) − CX̂j(t = T )) (2)

here Kct and Kd are the observer gains and q ∈ Z+, q > 1 con-
idering q an odd number and T is the batch processing time.
.1. Sketch of proof of Proposition 1

Defining the estimation error as ξ(t, j) = Xj(t) − X̂j(t) and
esting the Eq. (1) minus the Eq. (2) can be constructed the

f
v

Γ
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stimation error’s dynamics as follows:

˙ = Φj(Xj(t), U(t)) − Φj(X̂j(t), U(t)) + Kct|Yj(t)

− CX̂j(t)|1/q + �Φ(j) − Kd

p∑
j=1

(Yj(t = T )

− CX̂j(t = T )) (3)

ote that the dynamic of the estimation error depends on two
ariables, time (t) and the batch number (j), i.e. ξ̇ = ξ̇(t, j),
ow considering the structure of Eq. (3) the right side of the
quation can be separated into two functions, one of them time
ependent, and the other depends on the batch number j such
hat ξ̇ = f1(t) + f2(j), this structure allows to separated the
onvergence analysis on both two estimation errors such that

˙ = ė1 + ė2 where we define:

˙1 = f1(t) = Φj(Xj(t), U(t)) − Φj(X̂j(t), U(t)) + Kct|Yj(t)

− CX̂j(t)|1/q

nd

˙2 = f2(j) = �Φ(j) − Kd

p∑
j=1

(Yj(t = T ) − CX̂j(t = T ))

.1.1. Convergence analysis of the continuous time finite
bserver contribution

In this section it is analyzed the convergence characteristics
f the time depending terms of the estimation error, to show
he observer’s convergence properties in the time domain, in
ccordance with the following equation:

˙1 = Φj(Xj(t), U(t)) − Φj(X̂j(t), U(t)) + Kct|Yj(t)

− CX̂j(t)|1/q (4)

ote that the time varying terms contains a fraction order power
ontribution of the absolute value of the named measurement
rror (Yj(t) − CX̂j(t)) this kind of contribution can lead to reach
finite convergence, such that considering ėd = Kct|ed|1/q as the
esired trajectory it reach finite time stabilization, in accordance
ith Ref. [9].
Now, consider the following assumption:

2. The function Φ(◦) complies with Lipschitz condition
ith respect to Xj(t), i.e. |Φj(Xj(t), U) − Φj(X̂j(t), U)| ≤
|Xj(t) − X̂j(t)|; L > 0; and uniformly bounded on U therefore

aking the norm of Eq. (4) it can be expressed as:

ė1| ≤ L|Xj(t) − X̂j(t)| + KctC
1/q|Xj(t) − X̂j(t)|1/q (5)

ote that inequality (5) is a Bernoulli-type ordinary differential
nequation, such that for its solution it is possible to define the

ollowing change of variable for each scalar component of the
ector e1, we define:

i = e
(1−1/q)
1,i , i = 1, . . . , n with e1,i �= 0 (6)
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xpressing the time domain estimation error in the new variable
e1,i = Γie

1/q
1,i ), it is possible to find its dynamics as it is shown

y Eq. (7).

˙1,i =
(

q

q − 1

)
Γ̇ie

1/q
1,i (7)

ombining Eqs. (5)–(7) the following equation is generated:

(
q

q − 1

)
Γ̇ie

1/q
1,i

∣∣∣∣ ≤ Li|Γie
1/q
1,i | + ki|e1/q

1,i | (8)

here ki is the scalar entry of the matrix product KctC1/q. Finally,
t is possible to find the quota for the variable norm (inequality
9)). Note that the below expression is a first order differential
nequality.

Γ̇i| ≤ Li

∣∣∣∣
(

q − 1

q

)
Γi

∣∣∣∣ +
(

q − 1

q

)
ki (9)

efore to continue with the analysis, the following comments
re done:

e1,i = 0 ⇒ Γi = 0

e1,i �= 0 ⇒ Γi �= 0, i.e.{
e1,i > 0

e1,i < 0, q odd

}
⇒ Γi > 0

q > 1 ⇒
(

q − 1

q

)
> 0

(10)

3. Consider e1,i �= 0 and q ∈ Z+, q odd, (q − 1)/q > 0.

Now applying the relationship |x| = sign(x)x and performing
lgebraic manipulations onto inequality (9), the following is
btained:

ign(Γ̇i)Γ̇i ≤ Li

(
q − 1

q

)
sign(Γi)Γi + ki

q − 1

q
(11)

ow, it is possible to find some relationships among the variable
i and the sign of its dynamics then by assuming A3, we obtain

he general solution of inequality (11) for t0 = 0:

(
Li((q − 1)/q) sign(Γi)

)

i(t) ≤ exp −

sign(Γ̇i)
t

×
∫ t

0
exp

[
Li((q − 1)/q) sign(Γi)

sign(Γ̇i)
τ

][
((q − 1)/q)ki

sign(Γ̇i)

]
dτ

+ Γi(t0) exp

[
−Li((q − 1)/q) sign(Γi)

sign(Γ̇i)
t

]

if sign(Γ̇i) > 0 (12)

fter algebraic manipulations of Eq. (12) the following inequal-
ty is obtained:

e

N

O

e
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i(t) ≤ L−1
i

ki

sign(Γi)

[
1 − exp

[
−Li((q − 1)/q) sign(Γi)

sign(Γ̇i)
t

]]

+ Γi(t0) exp

[
−Li((q − 1)/q) sign(Γi)

sign(Γ̇i)
t

]
(13)

f sign(Γi)/sign(Γ̇i) > 0 and t is large enough and considering
10) then:

≤ Γi(t) ≤ L−1
i

ki

sign(Γi)
(14)

f ki is small enough Γ i(t) → εi with εi > 0 as small as be desired.

urthermore e1,i = q−1
√

Γ
q
i , then e1,i = q−1

√
ε
q
i , we choose ē =

axie1,i and ε̄ = maxiεi. It can be concluded that the maximum
f the time domain estimation error belongs to the open ball with

atio proportional to q−1
√

(L−1
i (ki/sign(Γi)))

q
.

.1.1.1. Observer convergence time. In order to determine the
onvergence time of the proposed observer, let us consider Eq.
13). As it can be seen the second term of the right side of the
bove equation is time dependent, at steady-state condition this
erm must exhibit a numerical value close to zero (Eq. (15)).

i(t0) exp

[
Li((q − 1)/q) sign(Γi)

sign(Γ̇i)
t

]
t=ttf

= ε̃i ≈ 0 (15)

ere, τ is the convergence time of the observer to the open ball
¯ ∈ Bε̄(0); after algebraic manipulations, the following equation
or the convergence time is calculated as:

tFT = maxitFT,i with tFT,i = Lnε̃
η
i

where η = − q

Li(q − 1)

sign(Γ̇i)

sign(Γi)
(16)

.1.2. Convergence analysis of the discrete observer
ontribution

For the corresponding stability analysis for the dis-
rete contribution of the proposed observer, let us consider
he below equation, presented in Section 3.1, which con-
ider the batch number evolution of the estimation: ė2 =
Φ(j) − Kd

p∑
j=1

(Yj(t = T ) − CX̂j(t = T )). Now given the dis-

rete nature of this estimation error the corresponding difference
quation is as follows:

2,j+1 = e2,j(j) +
⎛
⎝�Φ(j) − KdC

p∑
j=1

e2,j(j)

⎞
⎠ (17)

ow, the above equation can be expressed as:

e2,j+1 = e2,j(j) + �Φ(j) − KdCe3,j(j)
e3,j+1 = e3,j(j) + e2,j(j)

r in vector notation:

j+1 = Aπej + Θj(j) (18)
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here

ej+1 =
[

e2,j+1

e3,j+1

]
; Aπ =

[
1 − π −KdC

1 1 − π

]
;

Θj =
[

�Φ + πe2,j

πe3,j

]

> 1 is a stabilizing parameter [10] and Aπ is a Hurwitz sta-
le matrix with an adequate choosing of the observer gains Kd
nd π, note that the observer gain Kd provide stability to the
bserver, because it compensate the nonlinear term related with
he error modeling �Φ, which arises with the number of the
atch evolution.

Considering the following discrete Lyapunov equation,
here P = PT > 0:

j = eT
j Pej (19)

uch that the corresponding discrete dynamic is given by the
ollowing difference equation:

j+1 − Vj = 2eT
j P(Aπej + Θj) (20)

n accordance with assumption A2:

Θj| ≤ D|Mj(Xj − X̂j)| = D|Mjej| (21)

here D is the corresponding Lipschitz constant and Mj is a
ymmetric definite positive matrix playing role of a normalizing
atrix (since different components of the state variables may

ave a different physical nature).
Substituting:

j+1 − Vj ≤ 2|eT
j |P(Aπ + DMj)|ej| (22)

onsidering with an appropriate choosing of the observer gain
d we have that: Aπ + D|Mj| is a definite negative matrix.

Note that the above equation can be employed for observer’s
uning purposes, therefore:

j+1 − Vj ≤ 2|eT
j |P(Aπ + D|Mj|)|ej| < 0 (23)

hich proof that the discrete contribution of the observer,
symptotically converges.

. Batch reactor modeling

As is well known the modeling of biological systems, in par-
icular for bioreacting process is a hard task because the parame-
ers related are time-variant and highly nonlinear functions of the
ystem’s states, process and environmental conditions. In partic-
lar sequencing batch wastewater bioreactors where the organic
atter to be degraded (substrate measured as chemical oxy-

en demand) changes continuously its composition, the sludge
noculated (biomass measured as volatile suspended solids) is
ot well characterized and the process variables do not follow
n exact operation policy, made that the right simulation, mon-

toring and control be very difficult tasks for the high varying
arameters model and operating conditions.

In particular, we develop a simple nominal mathematical
odel of a batch wastewater bioreactor to be employed as

t
w
b
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ominal plant for the design of the proposed state estimation
ethodology, this model is based on mass balance for sub-

trate and biomass concentration, which are the most important
ariables that describes the dynamics of the biological phase
f the bioreactor. Substrate concentration is considered as the
easured variable considering that it measured as COD is rou-

inely made in industrial operation [11]. Naturally most complex
odel containing a large system of nonlinear ordinary differen-

ial equations (ODEs) have been studied and reported in the
pen literature [12] and could be employed in this work, but for
llustration simplicity a two states model is employed.

.1. Experimental

Bench-scale bioreactor was utilized. These units are made
f Plexiglas with a volume capacity of 15 l. The air was sup-
lied using air diffusers stone in the reactor bottom to keep
he dissolved oxygen (DO) concentration at values higher than
.0 mg/l. The bubbles produced during the aeration kept the con-
ents of the bioreactor well mixed and homogeneous. Municipal
astewater was utilized for the experiments. Start-up was per-

ormed with wastewater and inoculated with biological sludge.
amples were taken out from the wastewater reservoir. Chemical
xygen demand (COD) and the volatile suspended solids (SSV)
ere determined in each sample employing the methodology
roposed in Ref. [13]. The mean of three analyses for concen-
rations evaluations were taken, in order to obtain the results
eported as below.

.2. Modeling

As usual, it is considered a continuous version of the biore-
ctor in order to obtain the bio-kinetic coefficients [14]:

For the reaction rate of substrate consumption:

s = μmax

Yd

X1X2

Ks + X2
= X2o − X2

θ
(24)

inearizing equation (a) and taking the inverse, Eq. (25) is
btained.

X1θ

X2o − X2
= YdKs

μmax

1

X2
+ Yd

μmax
(25)

s was obtained by plotting X1θ/(X2o − X2) versus 1/X2.
The Yd value was obtained, independently, measuring the

lope of Eq. (26).

1

θ
= Yd

rs

X1
− kd (26)

here X1 and X2 are the biomass and substrate concentration,
espectively, Yd the yield coefficient and θ is the dilution rate.

Using this value μmax was calculated from Eq. (24).

Now, the mathematical model described below is related to

he biological phase of a class of wastewater batch bioreactor,
hich will be the case study. It consists of mass balances for the
iomass (X1, Eq. (27)) and substrate (X2, Eq. (28)) concentra-
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errors and consequently the discrete estimation error decrease
with the batch numbers. Figs. 3 and 4 are related with the con-
tinuous (time) performance of the biomass in the bioreactor,
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ions, which are represented by a set of two nonlinear ODEs:

˙ 1 = μ(X2)X1 (27)

˙ 2 = −μ(X2)
X1

Yd
(28)

= X2 (29)

s it is commonly considered, the yield coefficient depends on
he substrate concentration in a linear way (Eq. (29)) and the
pecific growth rate in accordance with a Monod’s model.

d = 0.01 + 0.03X2 (30)

(X2) = 0.3X2

1.75 + X2
(31)

. Numerical experiments

In order to show the performance of the proposed estima-
ion methodology, the mathematical model above presented, was
imulated in a sequencing mode operation. Were simulated a
equence of 10 processed batches, changing the initial condi-
ion of the ODE between each processed batch and adding a

odeling error to the kinetic terms, both via random gener-
tor number, considering ±10% for the initial conditions for
ubstrate and biomass concentrations and ±5% on the kinetic
erm, the nominal initial condition for biomass and substrate
oncentration in the bioreactor are 2 and 20 g/l, respectively.
he proposed observer was implemented and a standard non-

inear Luenberger observer was implemented for comparison
urposes. As usual, the substrate concentration is considered
s the corresponding measured output, such that the biomass

oncentration is the task of the estimation methodology. The
bserver gain of the fractional order contribution is consid-
red of Kct = [0.1 2.5] h−1 and the corresponding gain of the
ntegral-type contribution is Kd = [0.01 0.225] h−1, the gain of

ig. 1. Discrete estimation error for biomass concentration using a nonlinear
uenberger observer.

F
L

ig. 2. Discrete estimation error for biomass concentration using the proposed
bserver.

he standard nonlinear Luenberger observer was chosen as Kct.
igs. 1 and 2 show the performance of the observers in rela-

ionship with the processed batch number, i.e. considering the
stimation error when t = T, as can be seen the nonlinear Luen-
erger observer presents a growth in the discrete estimation error
nd the proposed observer tends to compensate the modeling
ig. 3. Biomass concentration estimation in batch number 3 using a nonlinear
uenberger observer.
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ig. 4. Biomass concentration estimation in batch number 3 using the proposed
bserver.
howing the performance on the batch number 4; is observed a
aster response of the proposed observer, which is the charac-
eristic desired of the finite time observer, in comparison with
he standard observer; note that for this class of process the

ig. 5. Substrate concentration estimation in batch number 3 using a nonlinear
uenberger observer.
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ig. 6. Substrate concentration estimation in batch number 3 using the proposed
bserver.

iomass is the most important state variable to be estimate. In
igs. 5 and 6 is shown the performance of the both two observers,

t can be appreciate a similar performance, but consider that the
ubstrate concentration is the measured output, such that the
bserver only filter the corresponding input information. In this
articular batch, a comparison of the mathematical model and
he corresponding experimental data is made, can be concluded
hat the model represents satisfactory the process considered
ere.

. Concluding remarks

A hybrid observer, which shows continuous and discrete
onvergence properties, is designed for a class of repetitive oper-
tion mode process; in particular it is applied to sequencing
atch reactor (SBR) with an adequate success. The continuous
in time) contribution of the observer posses a finite time con-
ergence properties, as is shown in the mathematical frame of
he work under the assumption of the model’s nonlinearities are
ipschitz. Related with the discrete observer structure, a discrete

ntegral-type of the corresponding estimation error is considered
n order to compensate the modeling error raised between each
rocessed batch, with a good performance in accordance with
he theorist frame developed and the simulations realized.
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[3] R. Aguilar-López, R. Maya-Yescas, State estimation for nonlinear systems
under model uncertainties: a class of sliding-mode observers, J. Process
Control 15 (2005) 363–370.

[4] R. Engel, G. Kreisselmeier, A continuous-time observer which converges
in finite time, IEEE Trans. Autom. Control 47 (7) (2002) 1202–1204.

[5] M. Feki, Observer-based exact synchronization of ideal and mismatched
chaotic systems, Phys. Lett. A 309 (2003) 53–60.

[6] S. Bhat, D. Berstein, Continuous finite time stability of continuous

autonomous systems, SIAM J. Control Optim. 38 (2000) 751–766.

[7] Y. Hong, Y. Xu, J. Huang, Finite time control for robot manipulators, Syst.
Control Lett. 46 (2002) 243–253.

[8] Y. Hong, J. Huang, Y. Xu, On an output feedback finite-time stabilization
problem, IEEE Trans. Autom. Control 46 (2) (2001) 305–309.

[

[

[

l Engineering Journal 126 (2007) 155–161 161

[9] J. Alvarez-Ramirez, J. Solı́s-Daun, R. Solar, Robust finite-time stabiliza-
tion of temperature in batch reactors, Ind. Eng. Chem. Res. 41 (2002)
2238–2247.

10] R. Martı́nez-Guerra, R. Aguilar, A. Poznyak, A new robust sliding-mode
observer design for monitoring in chemical reactors, J. Dyn. Syst. Meas.
Control, ASME J. 126 (2004) 473–478.

11] G. Olsson, B. Newell, Waste water treatment systems. Modelling Diagnosis
and Control, IWA Publishing, UK, 2001.
12] D. Dochain, P. Vanrolleghem, Dynamic Modeling and Estimation in
Wastewater Treatment Process, IWA Publishing, UK, 2001.

13] Standard Methods for the Examination of Water and Wastewater, 19th ed.,
APHA/AWWA/WE Federation, Washington, DC, USA, 1995.

14] R. Ramalho, Wastewater Treatment, Ed. Reverté, Spain, 1999.
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